Publications

Filter by:

Findings – NAACL
2022
Yutong Shao, Nikita Bhutani, Sajjadur Rahman, Estevam Hruschka
Entity set expansion (ESE) aims at obtaining a more complete set of entities given a textual corpus and a seed set of entities of a concept. Although it is a critical task in many NLP applications, existing benchmarks are limited to well-formed text (e.g., Wikipedia) and well-defined concepts (e.g., countries and diseases). Furthermore, only a small number of predictions are evaluated compared to the actual size of an entity set. A rigorous assessment of ESE methods warrants more comprehensive benchmarks and evaluation. In this paper, we consider user-generated text to understand the generalizability of ESE methods. We develop new benchmarks and propose more rigorous evaluation metrics for assessing the performance of ESE methods. Additionally, we identify phenomena such as non-named entities, multifaceted entities, vague concepts that are more prevalent in user-generated text than well-formed text, and use them to profile ESE methods. We observe that the strong performance of state-of-the-art ESE methods does not generalize well to user-generated text. We conduct comprehensive empirical analysis and draw insights from the findings.
READ MORE
ACM SIGIR
2022
Reinald Kim Amplayo, Arthur Bražinskas, Yoshihiko Suhara, Xiaolan Wang, Bing Liu
Customer reviews are vital for making purchasing decisions in the Information Age. Such reviews can be automatically summarized to provide the user with an overview of opinions. In this tutorial, we present various aspects of opinion summarization that are useful for researchers and practitioners. First, we will introduce the task and major challenges. Then, we will present existing opinion summarization solutions, both pre-neural and neural. We will discuss how summarizers can be trained in the unsupervised, fewshot, and supervised regimes. Each regime has roots in different machine learning methods, such as auto-encoding, controllable text generation, and variational inference. Finally, we will discuss resources and evaluation methods and conclude with the future directions. This three-hour tutorial will provide a comprehensive overview over major advances in opinion summarization. The listeners will be well-equipped with the knowledge that is both useful for research and practical applications.
READ MORE
aiDM – SIGMOD
2022
Jin Wang, Yuliang Li, Wataru Hirota, Eser Kandogan
Real-world applications frequently seek to solve a general form of the Entity Matching (EM) problem to find associated entities. Such scenarios include matching jobs to candidates in job targeting, matching students with courses in online education, matching products with user reviews on e-commercial websites, and beyond. These tasks impose new requirements such as matching data entries with diverse formats or having a flexible and semantics-rich matching definition, which are beyond the current EM task formulation or approaches. In this paper, we introduce the problem of Generalized Entity Matching (GEM) that satisfies these practical requirements and presents an end-to-end pipeline Machop as the solution. Machop allows end users to define new matching tasks from scratch and apply them to new domains in a step-by-step manner. Machop cast the GEM problem as sequence pair classification so as to utilize the language understanding capability of Transformers-based language models (LMs) such as BERT. Moreover, it features a novel external knowledge injection approach with structure-aware pooling methods that allow domain experts to guide the LM to focus on the key matching information thus further contributing to the overall performance. Our experiments and case studies on real-world datasets from a popular recruiting platform show a significant 17.1% gain in F1 score against state-of-the-art methods along with meaningful matching results that are human understandable.
READ MORE
LREC
2022
Yuta Hayashibe
Often both an utterance and its context must be read to understand its intent in a dialog. Herein we propose a task, SelfContained Utterance Description (SCUD), to describe the intent of an utterance in a dialog with multiple simple natural sentences without the context. If a task can be performed concurrently with high accuracy as the conversation continues such as in an accommodation search dialog, the operator can easily suggest candidates to the customer by inputting SCUDs of the customer’s utterances to the accommodation search system. SCUDs can also describe the transition of customer requests from the dialog log. We construct a Japanese corpus to train and evaluate automatic SCUD generation. The corpus consists of 210 dialogs containing 10,814 sentences. We conduct an experiment to verify that SCUDs can be automatically generated. Additionally, we investigate the influence of the amount of training data on the automatic generation performance using 8,200 additional examples. https://github.com/megagonlabs/asdc
READ MORE